N₂Africa – Ethiopia

A workshop on Awareness Creation on Data Tools and Data Refinement

18 – 21 August, 2015, Addis Ababa, Ethiopia

Outline

- Introduction main goal of N2Africa
- Bring the workshop into context
 - Data vis-à-vis Information; Yield gap
 - Quality data to realize "Benefit the smallholder farmer", some examples
 - Closing legume yield gap Outline:
 - Well functioning input supply and output market (value chain)
 (Constraints with scaling up? Adoption? Intensification)
- Workshop objectives and expected output

Main goal: increasing inputs from N₂-fixation

Increase the area of land cropped with legumes (targeting of technologies)

In 2014, planned to reach 5225 (diag., demo, adapt.), achieved 4,008 farmers

In 2015, targeted for > 28,000 farmers

Link to <u>markets</u> and create new enterprises to it for legumes

Data vis á vis Information; Yield Gap

Data refers to raw data (numbers, it is the basic form of data, data that hasn't been analyzed or processed in any manner)

Information is "knowledge communicated or received concerning a particular fact or circumstance." data interpreted as a message. It provides knowledge or insight about a

- Data is unprocessed tacts figures. Information is processed data.
- Bad data costs **time and effort**, gives **false impressions**, results in **poor forecasts** and devalues everything else in the continuum

Yield Gap

A number of biophysical and socioeconomic factors puts constraints on crop yields resulting in yield gaps that can be tackled with adequate agricultural input and management

Soil Quality Constraints Agro-climatic Constraints

Market Accessibility Crop yield Variability

Yield gaps (examples, Genesis et al., AMBIO, 2014, 43, 175-190)

On farm chickpea grain yield response to I and R

Fig. Grain yield response of chickpea to P and/or I at Wolyta (Ibsa, 2013)

ToeT	Mothod	Doernite	SOIL TEST RATINGS	SS	
	,	(Very Low Medium	Optimum	Very High
Soil pH	1:1	6.1			
Buffer pH					
Phosphorus (P)	M3	18 ppm			
Potassium (K)	M3	51 ppm			
Calcium (Ca)	M3	847 ppm			
Magnesium (Mg)	M3	123 ppm			V
Sulfur (S)	M3	10 ppm			illa
Boron (B)	M3	0.2 ppm			ag
Copper (Cu)	M3	2.3 ppm			e
Iron (Fe)	M3	mdd 66			a
Manganese (Mn)	M3	122 ppm			
Zinc (Zn)	M3	5.9 ppm			
Sodium (Na)	M3	20 ppm		_	
			SOIL TEST RATINGS	မ	
Test	Method	Results	Very Low Medium	Optimum	Very High
Soil pH	1:1	5.7			
Buffer pH	ВРН	6.85			
Phosphorus (P)	M3	15 ppm			
Potassium (K)	M3	66 ppm			
Calcium (Ca)	M3	546 ppm			
Magnesium (Mg)	M3	102 ppm			b
Sulfur (S)	M3	8 ppm	-)
Boron (B)	M3	0.1 ppm			
Copper (Cu)	M3	2.3 ppm			
Iron (Fe)	M3	109 ppm			
Manganese (Mn)	M3	140 ppm			
Zinc (Zn)	M3	8.5 ppm			
Sodium (Na)	M3	18 ppm			
			CHIEVE HOLE IIOO		
Test	Method	Results	SOIL TEST RATINGS Very Low Low Medium C	Optimum	Very High
Soil pH	1:1	4.9			
Buffer pH	ВРН	6.86			
Phosphorus (P)	M3	26 ppm			
Potassium (K)	M3	21 ppm			
Calcium (Ca)	M3	155 ppm			
Magnesium (Mg)	M3	23 ppm			
Sulfur (S)	M3	8 ppm			С
Boron (B)	M3	0.1 ppm			
Copper (Cu)	M3	2.2 ppm			
Iron (Fe)	M3	49 ppm			
Manganese (Mn)	M3	33 ppm			
Zinc (Zn)	M3	2.2 ppm			
Sodium (Na)	M3	19 ppm			

Figure: Interrelationships between the different chickpea value chain actors

Variables

Functional partnership is **KEY**Market development
Extension support/institutions
Farming experience
Age of household
Education level farmers
Distance to production input markets
Distance to output markets
Distance to source of information
Infrastructure
Size of land holding
Productivity

The N2Africa 'development to research' model

- The N2Africa 'development to research' model has Delivery and dissemination (D&D) as core activities that take technologies to farmers
- Monitoring and Evaluation (<u>M&E</u>) provide the learning of <u>what</u> works <u>where</u>, and <u>why</u> for <u>whom</u>
- Research learning loops <u>analyze</u> and <u>iteratively</u> <u>improve</u> the technologies and their targeting within D&D

Three questions

- How to improve data quality?
 - Knowledgeability/Training of the data collector
 - Role of technology GPS, Mobile phones, Tablates
 - Institutional set up
 - Coordination/harmonization (Timing!)
 - Commitment of the researcher/extension agent
 - **Incentives** (opportunities for self promotion)
- How to maximize its use and impact?
 - Processing (analyses)- Generation of Information
 - Learning (what did we learn from previous season work?)
 - Planning (what modifications for next season? ...)

Main objectives;

- To provide a clear overview of all data tools (in integration with digital tablet data collection for smooth data flows);
- To refine the 2014 data with implementing partners

Expected outputs

- Data to be collected with respective data tools and guidelines will be clearly understood.
- M&E and agronomic data compiled and refined
- Digital data collection technology (using tablets) introduced & practiced.

Thank You